
Journal of Material Science and Mechanical Engineering (JMSME) 
Print ISSN: 2393-9095; Online ISSN: 2393-9109; Volume 2, Number 8; April-June, 2015 pp. 1-8 
© Krishi Sanskriti Publications 
http://www.krishisanskriti.org/jmsme.html 
 
 

 

A Computational Method for Non-Fourier Heat 
Transfer of Jeffrey’s Type  

Dhanaraj Savary Nasan1 and T. Kishen Kumar Reddy2 
1,2Jawaharlal Nehru Technological University, Hyderabad 

E-mail: 1savarynasan@gmail.com, 2

 
Abstract—In this paper, a unique finite-differenced Flow field 
Dependent Variation (FDV) computational method is presented to 
solve non-classical heat transfer like Jeffrey’s type non-Fourier heat 
conduction in still fluid or solid. By Taylor’s series expansion 
strategy, the original Jeffrey’s non-Fourier heat conduction equation 
is redeveloped into a form which now resembles the energy 
component of the conservative Navier-Stokes System of equations 
with zero flow velocity components. On applying the FDV 
methodology to the redeveloped Jeffrey’s non-Fourier heat 
conduction equation leads to the FDV equation for Jeffrey’s non-
Fourier heat transfer which is numerically discretized by the 
appropriate finite differences schemes to obtain the final finite 
differenced FDV method for the numerical solution of non-Fourier 
heat transfer of Jeffrey’s type in still fluid or solid . Numerical results 
based on our finite differenced FDV scheme for a one-dimensional 
Jeffrey’s type non-Fourier heat conduction in a still nano-fluid 
demonstrated the capability of FDV method to solve the non-classical 
heat transfer also. Furthermore numerical results of the manner in 
which the Heat Conduction Model Number ‘F

reddykishen@jntuh.ac.in 
 

T’ affects the non-
Fourier temperature behavior showed agreement with the 
predecessor’s published result of diffusion effects on non-Fourier 
temperature behavior due to increase in the values of ‘FT

1. INTRODUCTION 

’.  
 
Keywords: Flow field Dependent Variation theory, Navier-Stokes 
System of equations, non-Fourier, Heat waves, Second sound, 
thermal relaxation time, Jeffrey’s heat conduction equation. 

One of the important challenges in Computational Fluid 
Dynamics (CFD) is how to deal with very rapid changes of the 
solution variables like pressure, temperature, velocity and 
density both in time and space, where we are faced with 
smallest time and length scales for very high gradient 
variables. Further pairing challenges are the computational 
difficulties in resolving real complex flows as they are 
mixtures of physical phenomena like transition from laminar 
to turbulent flow, interactions between viscous & in-viscid 
flows, and incompressible & compressible flows. To tackle 
these challenges and resolve simultaneous all physical 
situations of fluid dynamics, Prof. T.J Chung and his co-
workers [1-5] have introduced FDV method just at dusk of the 
20th century. Since its inception, many benchmark cases [1-5] 
of fluid dynamics and classical heat transfer have been solved 

by FDV method to prove its excellent solution accuracy and 
numerical stability. Here we explore the possibilities of 
extending the benefits of FDV method to Computational Heat 
Transfer (CHT) by solving heat transfer phenomena 
influenced by both non-classical / non-Fourier and classical / 
Fourier heat transport effects and mechanism in a single 
domain. The classical heat flux constitutive model of the 
Fourier’s type is a steady state type equation and it does not 
account for the very short transient time required to reach the 
steady state equation when a temperature gradient is suddenly 
applied. During such very short transient time, the heat 
conduction is non- Fourier in nature i.e. hyperbolic thermal 
waves / second sound propagation [6, 7] takes place and we 
have following [8] models. 

Jeffrey’s model :( 1
a2 ) 𝜕𝜕

2𝑇𝑇
𝜕𝜕𝑡𝑡2  + ( 1

𝛼𝛼
 ) ∂T 

∂t
= 𝜕𝜕

2𝑇𝑇
𝜕𝜕𝑥𝑥2+ K 

∂ ( 𝜕𝜕
2𝑇𝑇

𝜕𝜕𝑥𝑥2 )

∂t
  (1)  

Heat Conduction Model Number FT = 𝐊𝐊
 τ
 was introduced by 

Tamma and Zhou [9] to improve the understanding 
relationships between the various heat flux constitutive 
models. For K ≠ 0 i.e. 0 < FT <1, the thermal behavior is 
parabolic as k1 ≠ 0  and for K = 0 i.e. FT =0, the thermal 
behavior is hyperbolic as k1 =0.  

Cattaneo’s model: If k1 =0 in Eq. (1), the Jeffrey’s model  

reduces ( 1
a2 ) 𝜕𝜕

2𝑇𝑇
𝜕𝜕𝑡𝑡2  + ( 1

𝛼𝛼
 ) ∂T 

∂t
 = 𝜕𝜕

2𝑇𝑇
𝜕𝜕𝑥𝑥2   (2)  

and thermal behavior of is hyperbolic and the  

transmission of heat is by thermal waves. Further If τ =0 in 
Eq. (2), the Cattaneo’s model reduces to the well known 
classical Fourier’s thermal conduction equation ∂T 

∂t
 = 𝛼𝛼 𝜕𝜕

2𝑇𝑇
𝜕𝜕𝑥𝑥2 

and the thermal behavior is of parabolic and the transmission 
of heat is by diffusion. By Taylor’s series expansion strategy 
[10], the Jeffrey’s heat conduction Eq. (1) can be redeveloped 
into an equation form resembling the energy component of 
conservative Navier-Stokes System of Equations .The 
redeveloped Jeffrey’s heat conduction equation is given 
respectively as: 
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 ∂T(x,t + τ)
∂t

 = α 𝜕𝜕
2[T(x,t+𝐊𝐊) ]

𝜕𝜕𝑥𝑥2    (3a) 

 

 ∂[ρcT (x,t + τ)]
∂t

 +  
∂ {∂ [ − k  T(x ,t  + 𝐊𝐊)] 

∂x } 

 ∂x
 =0   (3b) 

The energy component of the Navier-Stokes System of 
Equations for stand still constant property fluid condition 
(velocity v1=u=0) without source terms for 1-D can be 
expressed in conservation form [5] as  

 ∂𝐔𝐔 
∂t

 + ∂𝐅𝐅1
∂x1

 + ∂𝐆𝐆1
∂x1

 =0   (4)  

Where U = [ρcT] , 𝐅𝐅1=[0] & 𝐆𝐆𝟏𝟏 = �− kT,1�   (5) 

∴ ∂𝐔𝐔 
∂t

 + ∂𝐆𝐆1
∂x1

 =0   (6a) 

∂[ρcT ]
∂t

 + 𝝏𝝏 � − k𝐓𝐓,𝟏𝟏� 
∂x1

 =0   (6b)  

The comma in expression 𝐆𝐆1 indicates partial derivative w.r.t 
independent variable x1 (= x). Eq. (6b) is also the well known 
1-D unsteady heat conduction equation in solids. On 
comparing Eq. (3b) & Eq. (6a), it shall be noted the form of 
the both equations are same. Further on writing, ρcT(x, t+τ) 
=U(x, t + τ) = 𝐔𝐔τ   

& ∂ [ − k T(x,t + 𝐊𝐊)] 
∂x

 = G(x, t + K) = 𝐆𝐆𝐊𝐊    (7)  

 we can thus transform the Eq. (1) into a form similar to Eq. ( 
6a) [ resulted from the Eq. ( 4 ) ] through Eq. (3b). That is by 
Taylor’s series expansion strategy as adopted in our earlier 
investigation [10], the original Jeffrey’s heat conduction 
Eq.(1) can be redeveloped into such a single term L.H.S form 
Eq.(3a) which now resembles a case of the Navier-Stokes 
System of Equations which has the computational advantage 
of being numerically solved by the FDV method.  

2. FINITE DIFFERENCED FDV EQUATION FOR 
NON-FOURIER HEAT TRANSFER OF JEFFREY’S 
TYPE  

Based on Taylor’s series expansion,  

We denote 𝐔𝐔τ  =U(x, t + τ) = U(x, t) + τ 𝜕𝜕𝐔𝐔(x,t)
𝜕𝜕𝑡𝑡

 & 

𝐆𝐆𝐊𝐊  =G (x, t + K) = G(x, t) + K 𝜕𝜕𝐆𝐆(x,t)
𝜕𝜕𝑡𝑡

 

& since ρcT(x, t + τ) = U(x, t + τ) 

& ∂ [ − k T(x,t + 𝐊𝐊)] 
∂x

 = G(x, t + K), we can write the Eq. (3b) as 

𝜕𝜕𝐔𝐔τ 
𝜕𝜕𝑡𝑡

 + 𝜕𝜕𝐆𝐆𝐊𝐊 
𝜕𝜕x

 = 0 or ∂𝐔𝐔𝝉𝝉
𝒏𝒏

∂t
 + ∂𝐆𝐆𝐊𝐊

𝒏𝒏

∂x
 = 0   (8) 

Based on the FDV methodology [5] , on expanding 𝐔𝐔𝜏𝜏𝑛𝑛+1 in a 
special form of Taylor series about 𝐔𝐔𝜏𝜏𝑛𝑛  up to and the second – 
order time derivatives and incorporating the appropriate first 
order (s3) & second order ( s4) FDV diffusion parameters for 
the first and second order derivatives of 𝐔𝐔𝜏𝜏𝑛𝑛  w.r.t time 

respectively, we present our derived FDV equation for one 
dimensional non-Fourier heat conduction of Jeffery’s type in 
still constant property fluid or in solid as below with O(∆t3) :  

∆Tτ
𝑛𝑛+1 = ─ 𝐄𝐄1

n  ∂(∆T𝜏𝜏n +1)
∂x

─ 𝐄𝐄11
n 𝜕𝜕2(∆T𝜏𝜏n +1)

∂x2 ─ 𝐐𝐐n    (9a) 
 

∆Tτ
𝑛𝑛+1 + 𝐄𝐄1

n  ∂(∆T𝜏𝜏n +1)
∂x

 + 𝐄𝐄11
n 𝜕𝜕2(∆T𝜏𝜏n +1)

∂x2 = ─ 𝐐𝐐n    (9b) 

Where 

𝐄𝐄1
n  =(∆ts3 𝐛𝐛1)n    (10a)  

𝐄𝐄11
n =�∆ts3𝐜𝐜11 −

∆t2

2
s4(𝐛𝐛1)2�

n
   (10b) 

 

𝐐𝐐n  = 1
ρc
�∆t ∂𝐆𝐆𝐊𝐊

𝒏𝒏

∂x
− ∆t2

2
 𝐛𝐛1

n 𝜕𝜕𝟐𝟐�𝐆𝐆K
n  �

∂x𝟐𝟐
�   (10c) 

Finally resulted governing FDV equations Eq. (9) for 1D non-
Fourier heat conduction is numerically discretized by FDM, 
FEM, or FVM [5] which is prerogative of Computational 
Fluid Dynamicists / Numerical Heat Transfer Analysts. 

As exemplar, numerically discretizing FDV Eq. (9) by finite 
difference method (FDM) is illustrated next On approximating 
first order and second order spatial derivatives of Eq. (9) at 
each grid point (i-1, i, i+1) by second order accurate central 
finite differences, we present the final derived finite-
differenced FDV equation Eq.(11) for one dimensional non-
Fourier heat transfer of Jeffery’s type in still constant property 
fluid or in solid as below with O(∆x2,∆t3) : 

(∆Tτ )i
n+1+ (𝐄𝐄1)𝒊𝒊𝑛𝑛 �

(∆Tτ)i+1
n +1−(∆Tτ)i−1

n +1

2∆x
� + (𝐄𝐄11)𝒊𝒊𝑛𝑛   

�(∆Tτ )i+1
n +1−2(∆Tτ )i

n +1+(∆Tτ )i−1
n +1

∆x2 � = ─ 𝐐𝐐i
n  

 

�(𝐄𝐄1)𝒊𝒊
𝑛𝑛

2∆x
+ (𝐄𝐄11 )𝒊𝒊

𝒏𝒏

∆x2 ����������
𝐀𝐀i

n

(∆Tτ)i+1
n+1+�1 − 2(𝐄𝐄11 )𝒊𝒊

𝒏𝒏

∆x2 ����������
 𝐁𝐁i

n

(∆Tτ)i
n+1+ 

 

�(𝐄𝐄11 )𝒊𝒊
𝒏𝒏

∆x2 − (𝐄𝐄1)𝒊𝒊
𝑛𝑛

2∆x
 ����������

𝐂𝐂i
n  

(∆Tτ)i−1
n+1 = ─ 𝐐𝐐i

n , 

𝐀𝐀i
n  (∆Tτ )i+1

n+1 + 𝐁𝐁i
n  (∆Tτ )i

n+1 + 𝐂𝐂i
n  (∆Tτ )i−1

n+1 = ─ 𝐐𝐐i
n   (11) 

With 

(𝐄𝐄𝟏𝟏)𝒊𝒊𝑛𝑛  =(∆ts3 𝐛𝐛i)n    (12a)  

 (𝐄𝐄𝟏𝟏𝟏𝟏)𝒊𝒊𝑛𝑛  = �∆ts3𝐜𝐜11 −
∆t2

2
s4(𝐛𝐛1)2�

i

n
   (12b) 

 

(𝐆𝐆𝐊𝐊)𝒊𝒊𝑛𝑛= −k �(T𝐊𝐊)i+1
n − (T𝐊𝐊)i−1

n

2∆x
�  (12c) 
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(𝐛𝐛𝟏𝟏)𝒊𝒊𝑛𝑛  = 1
ρc
�𝜕𝜕𝐆𝐆𝐊𝐊
𝜕𝜕T𝜏𝜏

�
i

n
 = 1

ρc
 [𝐆𝐆𝐊𝐊𝑖𝑖

𝑛𝑛− 𝐆𝐆𝐊𝐊𝑖𝑖
𝑛𝑛−1

T𝜏𝜏  𝑖𝑖
𝑛𝑛− T𝜏𝜏   𝑖𝑖

𝑛𝑛−1]  (12d)  

 

 (𝐜𝐜11)i
n  = 1

 ρc
� 𝜕𝜕𝐆𝐆𝐊𝐊

 ∂T𝜏𝜏  ,i  
�

i

n
= 

 

1
ρc

[ 𝐆𝐆𝐊𝐊𝑖𝑖
𝑛𝑛− 𝐆𝐆𝐊𝐊𝑖𝑖

𝑛𝑛−1

�
T𝜏𝜏  𝑖𝑖+1 − T𝜏𝜏  𝑖𝑖−1

2∆𝑥𝑥 �
𝑛𝑛
− �

T𝜏𝜏  𝑖𝑖+1 − T𝜏𝜏  𝑖𝑖−1
2∆𝑥𝑥 �

𝑛𝑛−1] & or  

 

1
ρc

[ 𝐆𝐆𝐊𝐊𝑖𝑖
𝑛𝑛− 𝐆𝐆𝐊𝐊𝑖𝑖

𝑛𝑛−1

�
T𝜏𝜏 𝑖𝑖+1 − T𝜏𝜏  𝑖𝑖

∆𝑥𝑥 �
𝑛𝑛
− �

T𝜏𝜏  𝑖𝑖+1 − T𝜏𝜏  𝑖𝑖
∆𝑥𝑥 �

𝑛𝑛−1]   (12e) 

 

𝐐𝐐i
n  = ∆t

ρc
�𝐆𝐆𝐊𝐊𝑖𝑖+1− 𝐆𝐆𝐊𝐊𝑖𝑖−1

2∆x
�
𝑛𝑛
−  ∆t2

2ρc
 𝐛𝐛i

n  �𝐆𝐆𝐊𝐊𝑖𝑖+1−2𝐆𝐆𝐊𝐊𝑖𝑖+ 𝐆𝐆𝐊𝐊𝑖𝑖−1
∆x2 �

𝑛𝑛
  (12f) 

(s)𝒊𝒊𝑛𝑛  =  �s𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑖𝑖𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  �
𝒊𝒊
𝑛𝑛 =  

�s𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑖𝑖𝑆𝑆𝑆𝑆  �𝒊𝒊
𝑛𝑛  + �s𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 �𝒊𝒊

𝑛𝑛  

2
  (12g) 

�s𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑖𝑖𝑆𝑆𝑆𝑆  �
𝒊𝒊
𝑛𝑛

= 
 �𝒎𝒎𝒎𝒎𝒎𝒎(Ti−1

n  ,Ti+1
n )𝟐𝟐− 𝒎𝒎𝒊𝒊𝒏𝒏(Ti−1

n  ,Ti+1
n )𝟐𝟐

𝒎𝒎𝒊𝒊𝒏𝒏(Ti−1
n  ,Ti+1

n )
  (12h) 

 

�s𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 �𝒊𝒊
𝑛𝑛

= 
�𝒎𝒎𝒎𝒎𝒎𝒎(Ti

n−1 ,Ti
n )𝟐𝟐− 𝒎𝒎𝒊𝒊𝒏𝒏(Ti

n−1 ,Ti
n )𝟐𝟐

𝒎𝒎𝒊𝒊𝒏𝒏(Ti
n−1 ,Ti

n )
   (12i) 

 

(s3)𝒊𝒊𝑛𝑛  =�
min((s)𝒊𝒊𝑛𝑛 , 1) (s)𝒊𝒊𝑛𝑛 > 𝜔𝜔 (ω < 1)

0 (s)𝒊𝒊𝑛𝑛 < 𝜔𝜔 Tmin ≠ 0
�  (12j 

 

(s4)𝒊𝒊𝑛𝑛  =[f (s3, η)]i
n  or = 1

2
 {1 + [(s3)𝒊𝒊𝑛𝑛 ]η}   (12k) 

 

In Eq. (12h) and Eq.(12i), the case of Tmin

In Eq.(11) combined with Eq.(12) , because of the three time 
levels in this FDV method, initial data must be known at two 
time levels i.e. n & n-1 time levels. These data can be 
determined if the time derivative of temperature is specified at 
t=0. The finite-differenced FDV Eq. (11) on applying to the 
grid points in a one-dimensional computational domain 
combined with two initial & two boundary conditions, results 
into a system of linear, algebraic equations which can be 
solved using standard algorithm of matrix solver to compute 
(∆Tτ )i

n+1 variables at all grid points in the domain for time 
level n+1. Thomas algorithm of tri-diagonal matrix solver can 
be used if tri-diagonal system of linear, algebraic equations is 
generated at each time step. Whichever algorithm of matrix 
solver is used, it has to modified to include the provision of 
updating 𝐀𝐀i

n , 𝐁𝐁i
n , 𝐂𝐂i

n  & 𝐐𝐐i
n  in Eq.(11) at each subsequent time 

steps. Finally we decode computed element (∆Tτ )i
n+1 to 

obtain the primitive temperature solution variables T(x, t) =T 
as in Eq.(13): 

 = 0 can never arises 
as we here always take the temperature in Kelvin scale only. 𝜔𝜔 
is user defined specified small number less than 1.For the 
value of 𝜔𝜔 and range for η refer [5]. 

Ti
n+1 = 1

�1+ τ
∆t�

 �(∆Tτ )i
n+1 + �1 + 2τ

∆t
�Ti

n  ─ τ
∆t

Ti
n−1 �  (13) 

Thus from Eq.(11) / Eq.(13) based on FDV method , primitive 
temperature solution of a one dimensional non-Fourier heat 
conduction of Jeffrey’s type is computed that is repeated for 
each time step as the heat wave proceeds through the still 
constant property fluid or the solid medium with a constant 
speed ‘a’. Further it is possible to upgrade the finite 
differenced FDV Eq. (11) for 3-D non-Fourier heat conduction 
problems in still constant property fluid or in solid. 

3. RESULTS AND DISCUSSION 

As a numerical example, consider 1-D Jeffrey’s (K ≠ 0) non-
Fourier heat transport effects in a purely heat conducting 
medium of a still thin film of constant property nano-fluid [11] 
comprising of water as base fluid solvent and Titanium 
dioxide (TiO2) as solute nano-particle and assume that both 
the base fluid and nano-particles are in local thermal 
equilibrium during the numerical simulation. Initially the 
nano-fluid is at temperature T0. At the time t >0, both the end 
surfaces of the thin nano-fluid film at x=0 and x=l are 
impulsively [12] increased to a temperature Tw (that is a 
spatial temperature gradient is suddenly applied at both ends) 
and this sets up Jeffrey’s (FT = 0.86) non-Fourier transient 
temperature distributions in the assumed purely heat 
conduction nano-fluid medium. Thus the solution of the finite-
differenced FDV Eq. (11) characterizing this numerical 
problem of one dimensional Jeffrey’s type (FT 

T(x, t) =T

= 0.86) non-
Fourier heat transfer in the nano-fluid can be performed with 
following initial & boundary conditions and dimensional- less 
variables: 

0

T (0, t) = T (l, t) =T

 = 298 K & ∂ [ T(x,0)] 
∂t

 = 0 for t=0   (14) 

w

Dimensionless variables: 

 = 323K for t>0   (15) 

T* = T(x,t)−T0
T𝑤𝑤−T0

 ; x* = x
2√𝜏𝜏𝛼𝛼

 ; t* = t
2τ

   (16) 

As discussed earlier, because of the three time levels in this 
FDV method, initial data must be known at two time levels i.e. 
n-1 & n time levels. These data can be determined if the time 
derivative of temperature is specified at t=0. That is for the 
first time step ∆t, based on zero valu e of second order central 
finite difference expression of time derivative of temperature 
as given in Eq. (14) we obtain an initial condition as 
∂ [ T(x,0)] 

∂t
 = 0 ∴  T(x,0)𝑛𝑛+1− T(x,0)𝑛𝑛−1

2∆t
 ≈ 0 

 

→ T(x, 0)𝑛𝑛−1 = T(x, 0)𝑛𝑛+1 →T𝐢𝐢𝐧𝐧−𝟏𝟏 = T𝐢𝐢𝐧𝐧+𝟏𝟏   (17) 
 

The finite differenced expression for 1-D Jeffery’s type non-
Fourier heat conduction Eq. (1) can be written as: 
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─  𝐊𝐊 𝛌𝛌
∆𝐭𝐭

 T𝐢𝐢−𝟏𝟏𝐧𝐧+𝟏𝟏 + (1 + ∆t
τ
 +  2 𝐊𝐊 𝛌𝛌

∆𝐭𝐭
 ) T𝐢𝐢𝐧𝐧+𝟏𝟏 ─  𝐊𝐊 𝛌𝛌

∆𝐭𝐭
 T𝐢𝐢+𝟏𝟏𝐧𝐧+𝟏𝟏 = ─ T𝐢𝐢𝐧𝐧−𝟏𝟏  

 + (λ─   𝐊𝐊 𝛌𝛌
∆𝐭𝐭

 ) T𝐢𝐢−𝟏𝟏𝐧𝐧  + (2 + ∆t
τ
 ─ 2λ+  2 𝐊𝐊 𝛌𝛌

∆𝐭𝐭
 ) T𝐢𝐢𝐧𝐧 + (λ─   𝐊𝐊 𝛌𝛌

∆𝐭𝐭
 ) T𝐢𝐢+𝟏𝟏𝐧𝐧  

(18) 

Substituting the initial condition Eq. (17) in Eq. (18), we 
obtain the finite differenced expression for first time step ∆t 
as: 

─  𝐊𝐊 𝛌𝛌
∆𝐭𝐭

 T𝐢𝐢−𝟏𝟏𝐧𝐧+𝟏𝟏 + (2 + ∆t
τ
 +  2 𝐊𝐊 𝛌𝛌

∆𝐭𝐭
 ) T𝐢𝐢𝐧𝐧+𝟏𝟏 ─  𝐊𝐊 𝛌𝛌

∆𝐭𝐭
 T𝐢𝐢+𝟏𝟏𝐧𝐧+𝟏𝟏 = (λ─  𝐊𝐊 𝛌𝛌

∆𝐭𝐭
 ) T𝐢𝐢−𝟏𝟏𝐧𝐧  

+ (2 + ∆t
τ
 ─ 2λ+  2 𝐊𝐊 𝛌𝛌

∆𝐭𝐭
 ) T𝐢𝐢𝐧𝐧 + (λ─  𝐊𝐊 𝛌𝛌

∆𝐭𝐭
) T𝐢𝐢+𝟏𝟏𝐧𝐧   (19) 

On applying the Eq. (19) to the all intermediate grid points , 
we obtain a tri-diagonal system of linear, algebraic equations 
whose solution by means of Thomas’ Algorithm results in the 
values of the unknown temperatures at all the intermediate 
grid points of 1-D domain at time t=∆t. As a result of Eq. (14), 
Eq. (15) and Eq. (19), we have known initial temperature data 
at two time levels i.e. n-1 (t=0) & n (t=∆t) time levels. Based 
on these initial temperature data at (n-1) & n time levels and 
Eq.(16), we now proceed to apply our derived FDV Eq.(11) 
along with Eq.(12a) to Eq.(12k) to all the intermediate grid 
points of 1-D domain for t= 2∆t. This leads to a tri-diagonal 
system of linear, algebraic equations with unknowns ∆Tτ  at 
time level (n+1) for all the intermediate points of 1-D domain. 
Using Thomas’ Algorithm as standard for the treatment of the 
generated tri-diagonal systems of equations, we compute the 
values of (∆Tτ )i

n+1 at all the intermediate grids. Finally the 
primitive transient temperature solution variables Ti

n+1 at 
various intermediate grid points for (n+1) time level are 
obtained by substituting the computed element (∆Tτ )i

n+1 in 
Eq. (13).  

From the starting time t=0, final results of spatial 
dimensionless temperature distributions based on Eq. (16) at 
different instants of dimensionless time predicted by the FDV 
model are presented in Figure.1(a)-(d). The FDV model 
upholds the existence of heat waves in the thin nano-fluid and 
demonstrates the propagation process of heat waves, the 
magnitude and profile of transient temperature. This brings 
FDV model in par with other existing numerical models for 
non-Fourier heat conduction simulation. Once the temperature 
at thin film end boundaries are spontaneously raised, the film 
temperature is increased from To as time marches and there is 
the region of the temperature intensification and it’s no effect 
region in the film. That is the temperature is propagated 
through the film with a finite speed contrasting the Fourier’s 
law of infinite speed which is physically inadmissible. 
Superposition of the moving left and right heat waves results 
in wave interference phenomena [13] leading to incidents of 
rise in temperature at the intermediate grid points of the nano-
fluid film above the imposed temperature at both the 
boundary. Further more such peak temperature effects have 
been explained by the extended irreversible thermodynamics 
theory [14] theory. Figure.1(c)-(d). illustrates such 
temperature overshooting incidents. Finally it can be observed 

in Fig. 1(d), the oscillating peak temperature dies off for the 
dimensionless time t*=6.50 denoting t=2.665 ms, that is the 
numerical solution is converged, the final steady state 
temperature distribution conditions are reached with 
temperature filling the whole nano-fluid film at T(x, t ≥ 2.665) 
= Tw (=323 K ). 

In the above results and discussion for the first time step ∆t  in 
the R.H.S of Eq. (19), the temperature values at all the grid 
points of 1-D domain were known from the initial conditions 
Eq. (14) i.e. T0 . That is the time starts (t=0) when the 
temperature at the both boundaries of the thin film are at T0 
(=298 K). Now let us carry out Jeffrey’s non-Fourier heat 
transfer numerical simulation for the case where the time starts 
(t >0) when the temperature at the both boundaries of the thin 
film switches to Tw (=323 K) and then keeps constant. From 
the starting time t > 0, final results of spatial dimensionless 
temperature distributions based on Eq. (16) at different 
instants of dimensionless time predicted by the FDV model 
are presented in Figure.2(a)-(d). Significant heat wave nature 
of the temperature distributions can be observed from Figure.2 
(b) onwards. As the time progresses, wavy nature of the 
temperature propagation diminishes. Lastly the numerical 
solution is converged, the final steady state temperature 
distribution conditions are reached at t*=4.00 denoting t=1.64 
ms with temperature filling the whole nano-fluid film at T(x, t 
≥ 1.64) = Tw (=323 K). 

Numerical results of the manner in which the Heat Conduction 
Model Number ‘FT’ affects the Jeffrey’s non-Fourier 
temperature behavior is next illustrated in the Figure.3 (a)-(d). 
Here the value of τ is maintained constant but the values of 
‘K’ are increased. Figure.3 (a)-(d), it can be observed that the 
wave nature of the Jeffrey’s non-Fourier temperature 
distribution for small value of FT = 0.01 is highly significant 
and its enhanced temperature overshooting phenomena can be 
viewed uniquely in Fig.3 (b). Throughout the Fig. (3), it can 
be seen that the increase of ‘FT’ i.e. ‘K’ leads to stronger non-
Fourier heat diffusion and weaker non-Fourier heat wave 
propagation. Greater the ‘FT’ i.e. phase lag for temperature 
gradient ‘K’, the more even the temperature distribution will 
be. Physically the sharp wave fronts due phase lag for heat 
flux ‘τ’ can be smoothened effectively by increasing phase lag 
for temperature gradient ‘K’ leading to non-Fourier diffusion 
like heat conduction. 
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Fig. 1: Jeffrey’s non-Fourier heat conduction solutions from the 

starting time t=0 for FT
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Fig. 2: Jeffrey’s non-Fourier heat conduction solutions from the 

starting time t > 0 for FT

 

 = 0.86 predicted by FDV method at 
different instants of time (a) t*=0, 0.10, 0.25 (b) t*= 0.85,  
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Similar results for various initial and boundary conditions 
were established by the former investigators [8, 15-19]. This 
show the validity and credibility of our derived FDV 
algorithm for Jeffrey’s non-Fourier heat conduction as it has 
the intrinsic ability to smoothen Cattaneo’s non-Fourier sharp 
heat waves embedded in the Jeffrey’s model on increasing the 
time lag of the temperature gradient ‘K’. Further from the 
Figure.3 (a)-(d), it can be observed that temperature 
distributions for FT

4. CONCLUSION 

 = 1 i.e. K = τ were approaching the 
classical Fourier heat diffusion solution and such similar 
results can be seen in [17-19]. 

The transient temperature distribution simulation in a nano-
fluid film subjected to an impulsive boundary temperature 
conditions using FDV model revealed a finite heat wave speed 
in the heat conduction process in contrast with the classical 
Fourier heat conduction. Consequently a finite difference / 
finite element scheme based on FDV methodology can now 
serve as an alternative to the existing numerical and analytical 
methods for non-classical heat transfer of Jeffrey’s type. 

The exceptionality of this FDV algorithm is that for every 
time step, coefficients (𝐀𝐀i

n , 𝐁𝐁i
n  & 𝐂𝐂i

n) of Eq. (11) will change 
as the local temperature field changes and will modify the 
governing FDV Eq. (11) to solve the appropriate physics of 
hyperbolic, parabolic or mixed nature that are going on at each 
grid point. This is in contrast with other existing numerical 
schemes where normally such coefficients [L.H.S coefficients 
of Eq. (18)] expressed in terms of the conducting medium’s 
thermo-physical properties (α, τ & K), computational spatial 
& time increments (∆x & ∆t) remains constant. 

The parametric study revealed that the effects of phase lag ‘K’ 
of the temperature gradient on the thermal behavior are 
significant in the Jeffrey’s non-Fourier heat conduction. 
Quantitatively the increase in Heat Conduction Model Number 
‘FT’ resulted in smoothening the Cattaneo’s non-Fourier sharp 
heat waves embedded in the Jeffrey’s model leading to non-
Fourier diffusion like heat conduction. Furthermore it was 
observed for FT

Present work was confined to non-Fourier heat conduction in 
still fluid. Future broad research will be required to develop 
FDV formulation for numerical simulation of 3-D non-Fourier 
heat transfer problems both in flowing Newtonian & non-
Newtonian fluids also. 

 = 1 i.e. for all K = τ, the temperature 
distributions were approaching the classical Fourier heat 
diffusion solution. The above two similar results were also 
established by the former investigators and this show the 
validity and credibility of our derived FDV algorithm for 
Jeffrey’s non-Fourier heat transfer. 
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NOMENCLATURE 

U conservation variable  𝐆𝐆𝑖𝑖  diffusion flux variables 

∆x spatial increment  𝐔𝐔τ  U(x, t + τ) 

∆t time increment   Tτ    T(x, t + τ) 

k thermal conductivity   𝐆𝐆𝐊𝐊    G (x, t + K) 

T temperature T(x, t)   T𝐊𝐊   T(x, t +  𝐊𝐊) 

c specific heat   ∆T𝜏𝜏𝑛𝑛+1 T𝜏𝜏𝑛𝑛+1 − T𝜏𝜏𝑛𝑛  

k1 effective thermal conductivity 

k2 elastic conductivity (k= k1 + k2) 

a Heat wave speed ( α
 τ
 ) 

K time parameter τ ( k1
k

) 

1/2 

𝐅𝐅𝑖𝑖  convection flux variables 

s FDV parameter 

s3 1st order diffusion FDV parameter 

s4 2nd

w boundary surface 

 

 order diffusion FDV parameter 

FT  Heat Conduction Model No. ( 𝐊𝐊
 τ
 ) 

𝐛𝐛𝑖𝑖  diffusion Jacobian 

𝐜𝐜𝑖𝑖𝑖𝑖  diffusion gradient Jacobian 

l heat conducting medium thickness 

Greek symbols 

τ thermal relaxation time   ρ   mass density 

α thermal diffusivity ( k
ρ c

 )   λ   𝛂𝛂 ∆𝐭𝐭𝟐𝟐

𝛕𝛕 ∆𝐱𝐱𝟐𝟐
 

ω user defined specified small number 

η Number relating s3 and s4 

Superscript 

n-1, n, n+1 running index in the time direction 

* dimensionless parameter 

Subscript 

i, j co-ordinate dimension counters =1, 2, 3 

in a partial differential equation 

i-1, i, i+1 running index in the x direction in a finite 

differenced equation 

0 initial 
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